The convolution of digital images is the typical problem of solution linear equation. We get the perfect result by using the Jacobi iteration method. 由于数字图像解卷积是典型的解线性方程组的问题,用雅可比(Jacobi)迭代法得到了很好的结果。
Improving Convergence Criteria of Jacobi and Gauss-Seidel Iteration Methods Jacobi、Gauss-Seidel迭代法收敛准则的改进
A iteration method is used to solve a kind of nonlinear problem. The method is an extension of Jacobi iteration method from linear problem to nonlinear problem, and have the geometry convergence. 应用迭代法求解一类有限维非线性问题,该方法是求解线性问题的雅可比迭代法在非线性问题上的推广,且此迭代方法具有几何收敛性质。
Several new criteria of convergence of Jacobi and Gauss-Seidel iteration methods Jacobi和Gauss-Seidel迭代收敛的新判别准则
It extends especially the condition of unreduced weak diagonally dominant matrix for the convergence of Jacobi, Gauss-Seidel, and SOR iteration methods. 特别是放宽了Jacobi,Gauss-Seidel和SOR迭代法收敛的不可约弱对角占优矩阵这一条件。
Convergence Criteria of Jacobi, Gauss-Seidel, and SOR Iteration Methods in Weak Diagonally Dominant Matrix 弱对角占优矩阵的Jacobi和Gauss-Seidel及SOR迭代法收敛准则
The method is based on assuming that Jacobi iteration is convergent. 这种方法的应用基础是相应的Jacobi迭代收敛。
Some convergence criteria of Jacobi iteration for block matrix 矩阵分块的Jacobi迭代收敛的几个准则
Convergence of the method is proved with the weight function Jacobi and the basic iteration symmetrizable. 在权函救为Jacobi权和基本迭代可对称化的情况下,证明了方法是收敛的。
Abstract In this paper, the convergence and divergence rates of the matrix multisplitting AOR, SOR, Gauss-Seidel, extrapolated Jacobi as well as Jacobi iteration methods are compared in detail. 本文对于矩阵多分裂AOR,SOR,Gauss-Scidel,外插Jacobi以及Jacobi迭代算法的敛散速度做了细致的比较。
In this paper, the application of Jacobi Iteration and Gauss-Seidel Iteration in solution of linear ( equations) was introduced, and their advantage and disadvantage were also compared. 对Jacobi迭代法与Gauss-Seidel迭代法在解线性方程组中的应用进行了介绍,并比较了两者的优缺点。
Two notes for simultaneous iteration of matrix eigenvalue problems are given: 1, A new Jacobi-type method for solving Hermitian matrix eigenproblems is established. 本文对同时迭代法作两点注。其一,对文[1]中关于B-正规矩阵的同时迭代法所涉及的,解埃尔米特矩阵特征值问题的Jacobi方法进行改进,使计算量大为减少,收敛加快;
Convergence Analysis of Jacobi Iteration for Finite Element Equations 有限元方程Jacobi迭代的收敛性分析
Relation Between Condition Number and Iteration Degrees in Jacobi Iteration Pretreatment Jacobi迭代预处理中的条件数与迭代次数的关系
Jacobi Iteration Method and Its Generalization Jacobi方法及其推广
Elaborate a basic theory of calculating group of linear equation by iteration method, reforming Jacobi iteration method, raising constringency rate. 阐述用迭代法解线方程组的基本理论,对雅可比迭代法作了一些改进,提高了其收敛速度。
Early iteration methods have Jacobi, Gauss-seidel etc* preconditioned methods are sparse approximate inverse, incomplete LU decomposition, sorting, etc. Incomplete LU decomposition is a highly versatile method. 早期的迭代法有Jacobi、Gauss-seidel等等,预处理方法主要有稀疏近似逆,不完全LU分解,排序等等。